
SHOCKS

At a shock front propagating in a magnetized fluid at an angle θ with
respect to the magnetic induction B, the jump conditions are 13,14

(1) ρU = ρ̄Ū ≡ q;

(2) ρU2 + p+ B 2
⊥ /2µ = ρ̄Ū2 + p̄+ B̄ 2

⊥ /2µ;

(3) ρUV − B‖B⊥/µ = ρ̄Ū V̄ − B̄‖B̄⊥/µ;

(4) B‖ = B̄‖;

(5) UB⊥ − V B‖ = ŪB̄⊥ − V̄ B̄‖;

(6) 1
2 (U2 + V 2) + w + (UB 2

⊥ − V B‖B⊥)/µρU

= 1
2 (Ū2 + V̄ 2) + w̄ + (ŪB̄ 2

⊥ − V̄ B̄‖B̄⊥)/µρ̄Ū .

Here U and V are components of the fluid velocity normal and tangential to
the front in the shock frame; ρ = 1/υ is the mass density; p is the pressure;
B⊥ = B sin θ, B‖ = B cos θ; µ is the magnetic permeability (µ = 4π in cgs
units); and the specific enthalpy is w = e + pυ, where the specific internal
energy e satisfies de = Tds − pdυ in terms of the temperature T and the
specific entropy s. Quantities in the region behind (downstream from) the
front are distinguished by a bar. If B = 0, then15

(7) U − Ū = [(p̄− p)(υ − ῡ)]1/2;

(8) (p̄− p)(υ − ῡ)−1 = q2;

(9) w̄ − w = 1
2 (p̄− p)(υ + ῡ);

(10) ē− e = 1
2 (p̄+ p)(υ − ῡ).

In what follows we assume that the fluid is a perfect gas with adiabatic index
γ = 1 + 2/n, where n is the number of degrees of freedom. Then p = ρRT/m,
where R is the universal gas constant and m is the molar weight; the sound
speed is given by Cs

2 = (∂p/∂ρ)s = γpυ; and w = γe = γpυ/(γ − 1). For a

general oblique shock in a perfect gas the quantity X = r−1(U/VA)2 satisfies14

(11) (X−β/α)(X−cos2 θ)2 = X sin2 θ
{

[1 + (r − 1)/2α]X − cos2 θ
}

, where

r = ρ̄/ρ, α = 1
2 [γ + 1− (γ − 1)r], and β = Cs

2/VA
2 = 4πγp/B2.

The density ratio is bounded by

(12) 1 < r < (γ + 1)/(γ − 1).

If the shock is normal to B (i.e., if θ = π/2), then

(13) U2 = (r/α)
{
Cs

2 + VA
2 [1 + (1− γ/2)(r − 1)]

}
;

(14) U/Ū = B̄/B = r;
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(15) V̄ = V ;

(16) p̄ = p+ (1− r−1)ρU2 + (1− r2)B2/2µ.

If θ = 0, there are two possibilities: switch-on shocks, which require β < 1 and
for which

(17) U2 = rVA
2;

(18) Ū = VA
2/U ;

(19) B̄ 2
⊥ = 2B 2

‖ (r − 1)(α− β);

(20) V̄ = ŪB̄⊥/B‖;

(21) p̄ = p+ ρU2(1− α+ β)(1− r−1),

and acoustic (hydrodynamic) shocks, for which

(22) U2 = (r/α)Cs
2;

(23) Ū = U/r;

(24) V̄ = B̄⊥ = 0;

(25) p̄ = p+ ρU2(1− r−1).

For acoustic shocks the specific volume and pressure are related by

(26) ῡ/υ = [(γ + 1)p+ (γ − 1)p̄] / [(γ − 1)p+ (γ + 1)p̄].

In terms of the upstream Mach number M = U/Cs,

(27) ρ̄/ρ = υ/ῡ = U/Ū = (γ + 1)M2/[(γ − 1)M2 + 2];

(28) p̄/p = (2γM2 − γ + 1)/(γ + 1);

(29) T̄ /T = [(γ − 1)M2 + 2](2γM2 − γ + 1)/(γ + 1)2M2;

(30) M̄2 = [(γ − 1)M2 + 2]/[2γM2 − γ + 1].

The entropy change across the shock is

(31) ∆s ≡ s̄− s = cυ ln[(p̄/p)(ρ/ρ̄)γ ],

where cυ = R/(γ − 1)m is the specific heat at constant volume; here R is the
gas constant. In the weak-shock limit (M → 1),

(32) ∆s→ cυ
2γ(γ − 1)

3(γ + 1)
(M

2 − 1)
3 ≈

16γR

3(γ + 1)m
(M − 1)

3
.

The radius at time t of a strong spherical blast wave resulting from the explo-
sive release of energy E in a medium with uniform density ρ is

(33) RS = C0(Et2/ρ)1/5,

where C0 is a constant depending on γ. For γ = 7/5, C0 = 1.033.
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